

 Navigation

 	
 index

 	
 next |

 	Miro Community 1.10.0 documentation

Welcome to Miro Community’s documentation!

Miro Community [http://mirocommunity.org] is an open-source video curation platfrom running on
Django [http://djangoproject.com/]. Rather than uploading videos to yet another place on the internet,
you can leverage videos which have already been uploaded to other services,
such as blip.tv [http://blip.tv/], Vimeo [http://vimeo.com/], YouTube [http://youtube.com/], either by importing the videos
individually or by importing RSS/Atom feeds of videos.

Miro Community was originally developed by the Participatory Culture
Foundation [http://pculture.org/] to allow anyone to build a community video site, amplifying the
voices of grassroots and citizen media makers and connecting local producers
with local audiences. Over time, the platform has been used by a variety of
other groups, including universities, open-source communities, and more.

	website:	http://mirocommunity.org/

	docs:	http://readthedocs.org/docs/mirocommunity/

	bugtracker:	http://bugzilla.pculture.org/

	code:	https://github.com/pculture/mirocommunity

	mailing list:	http://groups.google.com/group/miro-community-development

	irc:	#miro-hackers on irc.freenode.net

Contents

	Installation
	Creating a virtualenv

	Installing Miro Community

	Contributing to Miro Community
	Reporting bugs and requesting features
	Reporting bugs

	Requesting features

	Ticket life cycle

	Writing Documentation

	Contributing Code
	Finding tickets

	Claiming tickets

	Writing code

	Submitting code

	Review process

	Git Branching Model

	Release process
	Version numbering
	Major releases

	Minor releases

	Micro releases

	Release process
	Alpha (development)

	Beta (bugfixes)

	Release candidate (blockers)

	Support

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Miro Community 1.10.0 documentation

Installation

Note

There are a couple of things that this installation guide assumes:

	That you have installed Mercurial [http://mercurial.selenic.com/] and Git [http://git-scm.com/] on your system.

	That you have installed Python [http://python.org] and virtualenv [http://pypi.python.org/pypi/virtualenv] on your system.

These are basic instructions for installing a copy of Miro Community for local development and testing. You will need to modify the installation for a production environment - for example, you will need to draw up a requirements file that describes your production environment, and you will need to use your own settings file.

Creating a virtualenv

First up, you’ll want to create and activate a virtual environment somewhere on your computer:

virtualenv testenv
cd testenv
source bin/activate

Installing Miro Community

Run the following commands from the root of your (installed and activated) virtualenv:

pip install -e git+git://github.com/pculture/mirocommunity.git@1.10.0#egg=mirocommunity --no-deps
cd src/mirocommunity/test_project
pip install -r requirements.txt
python manage.py syncdb # This will prompt you to create an admin user
python manage.py runserver

Congratulations! You’re running a local testing instance of Miro Community! You can access it in your web browser by navigating to http://127.0.0.1:8000/, and you can get the admin by navigating to http://127.0.0.1:8000/admin/.

If this is your first time using a Django app, you should definitely check out the Django tutorial [https://docs.djangoproject.com/en/1.3/intro/tutorial01/] to get a better understanding of what’s going on, how to change the project settings, etc. The testing project can be a helpful place to start, but it is not meant to be used in a production setting.

Warning

Using the test project unaltered for a production server would be extremely insecure, because its SECRET_KEY is not secret.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Miro Community 1.10.0 documentation

Contributing to Miro Community

	Reporting bugs and requesting features

	Writing Documentation

	Contributing Code

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Miro Community 1.10.0 documentation

 	Contributing to Miro Community

Reporting bugs and requesting features

One of the easiest ways you can help Miro Community is to put tickets into the
bug tracker [http://bugzilla.pculture.org/], either reporting bugs or asking for new features.

Reporting bugs

Here are some guidelines for good bug reports:

	Check the bug tracker to make sure that the bug has not already been
reported.

	Ask on the IRC channel (#miro-hackers on irc.freenode.net) or the mailing list [http://groups.google.com/group/miro-community-development] to make
sure that what you’re seeing really is a bug.

	Make sure that the bug is reproducible. Include instructions for how to
reproduce it.

	Be as specific as possible. If a video page looks strange, check whether
other video pages also look strange, then report which is the case.

	Give as much information as possible. Include error text, screenshots,
links, anything that you have.

The better your bug report, the more likely someone is to fix it!

Reporting security issues

Please report security issues only to dev@mirocommunity.org.

Requesting features

When requesting a new feature, please do the following:

	Ask on the IRC channel (#miro-hackers on FreeNode) or the mailing list [http://groups.google.com/group/miro-community-development]
to get a general feeling on the feature.

	In your ticket, give a clear use case for/reason behind the new feature.

Ticket life cycle

	New tickets can be claimed by any community member.

	New and assigned tickets may be RESOLVED by a core member at any
time with the following resolutions:
	INVALID: The ticket isn’t applicable to Miro Community. For
example, someone suggesting a change to Django.

	WONTFIX: The ticket will not be accepted, probably because it is
not a bug, because the payoff is not seen as worth the effort, or
because the ticket is rendered obsolete by parallel work on another
ticket.

	DUPLICATE: The ticket is already in the tracker.

	WORKSFORME: The ticket would be a valid bug, but it can’t be
reproduced.

	INCOMPLETE: More information is required to confirm the bug or explain
the feature.

	Once a ticket is claimed, it is up to the assignee to start a branch for
that ticket and submit a pull request to the canonical repository. When
a pull request is submitted, the assignee should set the ticket’s
needs-peer-review flag to ? and link to the pull request.

	Once a pull request has been submitted and the ticket has been flagged, a
core member will review the code. This should be someone other than the
assignee. If there are problems with the branch, they should explain the
problems by commenting on github, inline and on the pull request.
Otherwise, they can merge it in and change the ticket status to
RESOLVED/FIXED and the needs-peer-review flag to +.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Miro Community 1.10.0 documentation

 	Contributing to Miro Community

Writing Documentation

Miro Community uses Sphinx [http://sphinx.pocoo.org/] for documentation, which translates
reStructuredText [http://docutils.sourceforge.net/rst.html] files into HTML, PDF, or other formats. The canonical
documentation is compiled and made available on readthedocs [http://readthedocs.org/docs/mirocommunity/], but you can
also use Sphinx to compile the documentation on your local development machine.

If you don’t feel like you can write very well, don’t sweat it. Write what you
can, and pass it off to someone else to improve. The first draft of a piece of
documentation is hard to write simply because it doesn’t exist. Writing it can
give someone else a great starting point.

Here are some good resources on writing documentation:

	Django’s docs on writing documentation [https://docs.djangoproject.com/en/dev/internals/contributing/writing-documentation/]

	RTFM - wRite The Friendly Manual [http://blip.tv/djangocon/rtfm-write-the-friendly-manual-5573341]

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Miro Community 1.10.0 documentation

 	Contributing to Miro Community

Contributing Code

You want to contribute code? Great! Here’s how you can do it.

Finding tickets

Our tickets are all stored in our bugzilla installation [http://bugzilla.pculture.org/]; you can browse the
tickets by component, or check out this summary of all open tickets [http://bugzilla.pculture.org/buglist.cgi?query_format=advanced&list_id=2600&component=Admin&component=Backend&component=Custom%20Theming&component=Documentation&component=Frontpage&component=Listings&component=Source%20Imports&component=Submission&component=View%20Video&resolution=—&product=Miro%20Community].

Claiming tickets

If you don’t see a ticket, feel free to open one! Any ticket that is assigned
to admin@pculture.org is free to claim without asking, simply by assigning it
to yourself. If a ticket is already claimed, but seems inactive, contact the
assignee and see if it’s all right for you to claim it. (Relatedly, if you
don’t actually have time to work on a ticket, don’t claim it!)

Writing code

We use the same coding style as the Django project [https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/].

Submitting code

We accept code submissions as pull requests to our github repository [http://github.com/pculture/mirocommunity], not
as patch files, diff files, or anything else. Most of the time, when you submit
code, it will be as a ticket branch - though if the
change is extremely minor, you can submit a pull request without opening a
ticket first. Pull requests must include any changes to unit tests and
documentation that are needed.

Before we can accept your code submission, you will need to sign a
Contributor Assignment Agreement,
digitize it with a scanner or a good camera, and send it to legal@pculture.org.
It’s super easy, and it lets us keep the project open source.

Review process

After the pull request is made, a core contributor to the Miro Community
project will review the code; they will either accept the pull request or
point out where changes need to be made to get the branch ready for acceptance.

See also

Ticket life cycle

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Miro Community 1.10.0 documentation

Git Branching Model

We use a variant of nvie’s git branching model [http://nvie.com/posts/a-successful-git-branching-model/] for our workflow.

The following main branches exist:

	master always points to the latest stable release. Any merge into
master must represent a stable release as far as we can tell.

	develop always points to the latest development code. This should
theoretically always be production-ready, but that is not guaranteed.

There are also some “supporting branch” types. Any supporting branch must
be reviewed before being merged.

	Release branches. Naming convention: release/<version_number>. These
branches originate from the development branch and may only receive
bugfixes for release blockers. Essentially, they represent release
candidates. The release branch should be merged back into the
develop branch on a regular basis. When the release candidate is
accepted, it will be merged into the master branch and the development
branch. The master branch merge commit will be tagged with the new
version number.

	Hotfix branches. Naming convention: hotfix/<ticket_number>. These
branches represent severe bugs in the master branch. They originate
from the master branch and fix a specific issue. Once checked and
confirmed, they are merged into the master branch as a new point
release, as well as being merged into the current release branch, or
the development branch if no release is under way.

	Feature branches. Naming convention: feature/<short_description>.
These branches represent large new features - for example, a large
refactor or major UI change. Feature branches may only originate from
the develop branch and may only be merged into the develop
branch.

	Ticket branches. Naming convention: ticket/<ticket_number>. These
branches represent tickets from the bug tracker which are not severe
bugs in the master branch, and which have non-trivial solutions. Ticket
branches may originate from develop, a feature branch (if the
ticket is specific to that feature) or a release branch (if the ticket
is a release blocker). They are merged into the branch they originated
from.

Trivial fixes to tickets can be made directly to the relevant branch,
and should include the ticket number prominently in the commit message.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Miro Community 1.10.0 documentation

Release process

Version numbering

Miro Community numbers its versions as A.B or A.B.C.

	A is the major version number. This is incremented for broad, sweeping changes to Miro Community - for example, a refactor of the entire admin.

	B is the minor version number. This is incremented for new features which aren’t broad, sweeping changes to Miro Community

	C is the micro version number. This is incremented for bug and security fixes.

Major releases

Very infrequent. May represent large changes.

Minor releases

The goal is to have minor releases on a fairly regular basis, every couple of months. Minor releases can add new features and remove features from previous releases.

Micro releases

Micro releases may not introduce new features; they may only fix critical issues:

	Security issues.

	Data loss.

	Crashing bugs/500 errors.

	Major bugs in new features from the latest minor release.

These bug fixes will be collected in a release branch; once all reported bugs have been resolved, the branch will be released. The one exception to this is security fixes, which cause the branch to be released immediately.

Release process

Alpha (development)

In this phase, features can be added to the upcoming release, with the approval of a core developer. Features with working patches are much more likely to be accepted than features with a thought-out design, which in turn are more likely to be accepted than off-hand suggestions.

Features will be marked on the following scale:

	P1: Must have. The release can’t happen without this.

	P2: Should have. This would be good to have in the release.

	P3: Maybe. This would be nice, but we don’t need it.

Any features which are lower priority than that should be marked to the future milestone.

Bugs can also be added to the upcoming release, or marked RESOLVED/WONTFIX if an accepted P1 feature renders the bug irrelevant.

Micro releases do not have this phase.

Beta (bugfixes)

Features can no longer be added in this phase; this corresponds to the creation of a release branch. Any bugs which are rendered irrelevant by features which have made it in should be marked RESOLVED/WONTFIX.

Bugs can still be added to the upcoming release; bugs with patches are much more likely to be resolved.

Before this stage can end, all bugs which have been marked RESOLVED/FIXED must be verified and marked VERIFIED/FIXED.

Release candidate (blockers)

In this phase, the only bugfixes that will be addressed are critical issues:

	Security issues.

	Data loss.

	Crashing bugs/500 errors.

	Major bugs in new features introduced in this release.

Before this stage can end, all bugs which have been marked RESOLVED/FIXED must be verified and marked VERIFIED/FIXED.

Once this stage ends, the release will be merged into master and tagged with the new version number.

Support

Only the latest minor release will be supported with micro releases, all of which will be merged into the develop branch as well.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Miro Community 1.10.0 documentation

Index

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/up.png

_static/comment.png

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Miro Community 1.10.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

